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Lecture 27 Highlights 
Phys 402 

 
Electrons in a Periodic Potential: The Kronig-Penney Model 
 There is a big difference between metals and insulators, as illustrated here.  What 
accounts for this difference?  We can understand the difference by considering the solution 
to the one-dimensional Schrodinger equation for a “free” electron in a metal that is 
perturbed by the periodic attraction to the ion lattice. 

A metal is made up of atoms that give up one or more electrons that become 
itinerant, meaning that they can roam all over the crystal.  The resulting positive ions 
remain fixed in place (except for small oscillations about their equilibrium positions), and 
the electrons are free to roam the metal in plane-wave-like eigenstates: [ ]rki 

•±exp . 
Electrons in a free-electron metal have extended states that cover the entire crystal.  One 
can think of the periodic attractive interaction between the electrons and the ion cores as a 
perturbative interaction to the free-electron model.  We shall set up and solve a model for 
the periodic potential and see what new physics results. 

 
 The Kronig-Penney model replaces the Coulomb attractive potential between a 
single electron and the regular array of positive ionic cores with a periodic square-well 
potential.  We will work in one dimension since it is simple and illustrates the new physics 
just as well as the 3D case.  We take the ions to have a periodic spacing 𝑎𝑎 and the widths 
of their negative potential wells to be 𝑏𝑏 < 𝑎𝑎.  The Kronig-Penney model potential is: 

 𝑉𝑉(𝑥𝑥) = �
0,    for 0 < 𝑥𝑥 < 𝑎𝑎 − 𝑏𝑏
−𝑉𝑉0,    for 𝑎𝑎 − 𝑏𝑏 < 𝑥𝑥 < 𝑎𝑎

𝑉𝑉(𝑥𝑥 + 𝑎𝑎)
 

This last line is the periodicity constraint, the potential is identical when translated forward 
or backward by the repeat distance 𝑎𝑎, or any integer multiple of that distance. 
 The Schrodinger equation can be solved in the two segments of the unit cell as; 

𝜓𝜓(𝑥𝑥) = 𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖, for 0 < 𝑥𝑥 < 𝑎𝑎 − 𝑏𝑏, where 𝛼𝛼 = �2𝑚𝑚𝑚𝑚
ℏ2

, and 

𝜓𝜓(𝑥𝑥) = 𝐶𝐶𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐷𝐷𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖, for 𝑎𝑎 − 𝑏𝑏 < 𝑥𝑥 < 𝑎𝑎, where 𝛽𝛽 = �2𝑚𝑚(𝑚𝑚+𝑉𝑉0)
ℏ2

, 

where we are using “running wave” solutions (𝐸𝐸 > 0) for later use in enforcing periodic 
boundary conditions.  We now need to find the constants 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷.  First we can impose 
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continuity of the wavefunction and its first derivative with respect to 𝑥𝑥 at the interface point 
𝑥𝑥 = 0.  This yields two equations: 
 𝐴𝐴 + 𝐵𝐵 = 𝐶𝐶 + 𝐷𝐷, 
𝑖𝑖𝛼𝛼𝐴𝐴 − 𝑖𝑖𝛼𝛼𝐵𝐵 = 𝑖𝑖𝛽𝛽𝐶𝐶 − 𝑖𝑖𝛽𝛽𝐷𝐷. 
 For the other two equations we can use the periodicity constraint imposed by the 
potential: 𝑉𝑉(𝑥𝑥 + 𝑎𝑎) = 𝑉𝑉(𝑥𝑥).  Naively we would like to say that 𝜓𝜓(𝑥𝑥 + 𝑎𝑎) = 𝜓𝜓(𝑥𝑥), 
reflecting the periodicity of the potential.  However, this is incorrect, and only captures a 
small fraction of the possible solutions to the TISE with a periodic potential. 
 We then went on a “subroutine” to derive the nature of the solution for 𝜓𝜓(𝑥𝑥) that 
correctly captures the effect of the periodic potential.  This is a derivation of Bloch’s 
theorem.  First we discussed the translation operator 𝑇𝑇� .  It has the effect of translating a 
wavefunction forward in 𝑥𝑥 by a specified amount: 𝑇𝑇�(𝑎𝑎)𝜓𝜓(𝑥𝑥) = 𝜓𝜓(𝑥𝑥 − 𝑎𝑎).  We showed 
that it can be written in terms of the momentum operator as 𝑇𝑇�(𝑎𝑎) = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑝𝑝�/ℏ.  Linear 
momentum is said to be the generator of translations.  𝑇𝑇�  is a unitary operator satisfying 
𝑇𝑇�(𝑎𝑎)†𝑇𝑇�(𝑎𝑎) = 1, so that the inverse is equal to the adjoint: 𝑇𝑇�(𝑎𝑎)−1 = 𝑇𝑇�(−𝑎𝑎) = 𝑇𝑇�(𝑎𝑎)†.  
Operators 𝑄𝑄�  are defined to transform under translation as: 𝑄𝑄�′ = 𝑇𝑇�†𝑄𝑄�𝑇𝑇�.  The effect of 
translation on the position operator is 𝑇𝑇�(𝑎𝑎)†𝑥𝑥�𝑇𝑇�(𝑎𝑎) = 𝑥𝑥� + 𝑎𝑎, and on the momentum 
operator 𝑇𝑇�(𝑎𝑎)†�̂�𝑝𝑇𝑇�(𝑎𝑎) = �̂�𝑝.  Hence for any operator: 𝑇𝑇�(𝑎𝑎)†𝑄𝑄�(𝑥𝑥�, �̂�𝑝)𝑇𝑇�(𝑎𝑎) = 𝑄𝑄�(𝑥𝑥� + 𝑎𝑎, �̂�𝑝).  A 
Hamiltonian operator is said to be translationally invariant if it satisfies 
𝑇𝑇�(𝑎𝑎)†ℋ� (𝑥𝑥�, �̂�𝑝)𝑇𝑇�(𝑎𝑎) = ℋ� (𝑥𝑥� + 𝑎𝑎, �̂�𝑝) = ℋ� (𝑥𝑥�, �̂�𝑝).  This is the case for the Kronig-Penney 
model because 𝑉𝑉(𝑥𝑥 + 𝑎𝑎) = 𝑉𝑉(𝑥𝑥).  Thus, using the unitary property of the translation 
operator, the Kronig-Penney Hamiltonian satisfies ℋ� (𝑥𝑥�, �̂�𝑝)𝑇𝑇�(𝑎𝑎) = 𝑇𝑇�(𝑎𝑎)ℋ� (𝑥𝑥�, �̂�𝑝), or in 
other words, the Hamiltonian and translation operator commute: �ℋ� (𝑥𝑥�, �̂�𝑝),𝑇𝑇�(𝑎𝑎)� = 0.  If 
this is so, then there exist a complete set of simultaneous eigenfunctions for these two 
operators, and call the simultaneous eigenfunctions 𝜓𝜓(𝑥𝑥).  The eigenvalue equations are 
ℋ� (𝑥𝑥�, �̂�𝑝)𝜓𝜓(𝑥𝑥) = 𝐸𝐸 𝜓𝜓(𝑥𝑥) (which is the TISE that we are trying to solve), and 𝑇𝑇�(𝑎𝑎)𝜓𝜓(𝑥𝑥) =
𝜆𝜆 𝜓𝜓(𝑥𝑥), where 𝜆𝜆 is the eigenvalue of the translation operator.  Because 𝑇𝑇�(𝑎𝑎) is a unitary 
operator, its eigenvalues are of unit modulus, and can be written as 𝜆𝜆 = 𝑒𝑒𝑖𝑖𝑖𝑖, where 𝜙𝜙 is 
real.  We shall choose 𝜙𝜙 = −𝑞𝑞𝑎𝑎, where 𝑞𝑞 is called the crystal momentum, and will be 
determined later.  Hence we have 𝑇𝑇�(𝑎𝑎)𝜓𝜓(𝑥𝑥) = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝜓𝜓(𝑥𝑥) = 𝜓𝜓(𝑥𝑥 − 𝑎𝑎).   

Now we can finally propose Bloch’s theorem.  Write the wavefunction 𝜓𝜓(𝑥𝑥) in the 
following odd form: 𝜓𝜓(𝑥𝑥) ≡ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢(𝑥𝑥), where 𝑢𝑢(𝑥𝑥) is an unknown function, for now.  
Now substitute this ansatz for 𝜓𝜓(𝑥𝑥) into the above equation: 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝜓𝜓(𝑥𝑥) = 𝜓𝜓(𝑥𝑥 − 𝑎𝑎).  The 
result is that 𝑢𝑢(𝑥𝑥 + 𝑎𝑎) = 𝑢𝑢(𝑥𝑥).  Hence the function 𝑢𝑢(𝑥𝑥) must have the same periodicity 
as the potential.  In other words, Bloch’s theorem states that the solutions to the TISE are 
𝜓𝜓(𝑥𝑥) ≡ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢(𝑥𝑥), which is a free-particle eigenstate multiplied by a periodic function in 
𝑥𝑥, with period 𝑎𝑎.  Note that this is very different from the (incomplete) naïve statement that 
𝜓𝜓(𝑥𝑥 + 𝑎𝑎) = 𝜓𝜓(𝑥𝑥).  

Here is a very brief alternative statement.  For differential equations that have 
periodic coefficients like the Schrodinger equation for the electron in this periodic 
potential, one can make a specific ansatz for the solution.  The Bloch theorem states that 
the solution to the Schrodinger equation can be written in the form 𝜓𝜓(𝑥𝑥) = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢(𝑥𝑥), 
where 𝑞𝑞 is a real number and the function 𝑢𝑢(𝑥𝑥) has the same periodicity as the potential, 
in this case 𝑢𝑢(𝑥𝑥 + 𝑎𝑎) = 𝑢𝑢(𝑥𝑥).  Bloch’s theorem (proven in these notes) is a special case of 
Floquet’s theorem.  Note that both 𝑞𝑞 and 𝑢𝑢(𝑥𝑥) are unknown at this time. 

https://en.wikipedia.org/wiki/Bloch_wave
https://www.physics.umd.edu/courses/Phys402/AnlageFall22/Proof%20of%20Blochs%20Theorem.pdf
https://en.wikipedia.org/wiki/Floquet_theory
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 Now back to the solution of the Kronig-Penney model.  Writing the solution to the 
Schrodinger equation in the Bloch form, we can solve for the periodic function as 𝑢𝑢(𝑥𝑥) =
𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝜓𝜓(𝑥𝑥), which becomes: 

𝑢𝑢(𝑥𝑥) = �𝐴𝐴𝑒𝑒
𝑖𝑖(𝑖𝑖−𝑖𝑖)𝑖𝑖 + 𝐵𝐵𝑒𝑒−𝑖𝑖(𝑖𝑖+𝑖𝑖)𝑖𝑖  for 0 < 𝑥𝑥 < 𝑎𝑎 − 𝑏𝑏

𝐶𝐶𝑒𝑒𝑖𝑖(𝑖𝑖−𝑖𝑖)𝑖𝑖 + 𝐷𝐷𝑒𝑒−𝑖𝑖(𝑖𝑖+𝑖𝑖)𝑖𝑖  for 𝑎𝑎 − 𝑏𝑏 < 𝑥𝑥 < 𝑎𝑎
 

We then impose the periodicity constraint on 𝑢𝑢(𝑥𝑥) by insisting that this function and its 
first derivative are periodic on either end of the unit cell, namely: 
𝑢𝑢(−𝑏𝑏) = 𝑢𝑢(𝑎𝑎 − 𝑏𝑏), and 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑖𝑖

|𝑖𝑖=−𝑏𝑏 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑖𝑖

|𝑖𝑖=𝑖𝑖−𝑏𝑏. 
This yields two more equations involving the coefficients 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷.  We end up with 4 
linear equations in 4 unknowns.  The 4 equations can be summarized in matrix form as 

𝑀𝑀�𝐾𝐾��⃗ = 0�⃗ , where 𝐾𝐾��⃗ = �
𝐴𝐴
𝐵𝐵
𝐶𝐶
𝐷𝐷

�.  To get a non-trivial solution to this equation we have to insist 

that the matrix 𝑀𝑀�  be non-invertible (otherwise the solution would be 𝐾𝐾��⃗ = 0�⃗ ).  This is 
guaranteed if the determinant of 𝑀𝑀�  is equal to zero.  The result (after much algebra) is the 
following algebraic equation: 

−𝛽𝛽2 − 𝛼𝛼2

2𝛼𝛼𝛽𝛽
sin(𝛽𝛽𝑏𝑏) sin[𝛼𝛼(𝑎𝑎 − 𝑏𝑏)] + cos(𝛽𝛽𝑏𝑏) cos[𝛼𝛼(𝑎𝑎 − 𝑏𝑏)] = cos(𝑞𝑞𝑎𝑎) 

 
We can simplify this equation by taking the limit of very deep and narrow square wells, in 
other words 𝑉𝑉0 → ∞ and 𝑏𝑏 → 0 such that 𝑉𝑉0𝑏𝑏 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐, or in other words 𝛽𝛽2𝑏𝑏 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐.  In this limit 𝛽𝛽𝑏𝑏 becomes a small parameter such that sin𝛽𝛽𝑏𝑏 ≅ 𝛽𝛽𝑏𝑏 and cos𝛽𝛽𝑏𝑏 ≅
1, and 𝑎𝑎 − 𝑏𝑏 ≅ 𝑎𝑎 and 𝛽𝛽2 ≫ 𝛼𝛼2.  With this approximation, the equation becomes: 
  −𝑖𝑖2𝑏𝑏𝑖𝑖

2
 sin(𝑖𝑖𝑖𝑖)

𝑖𝑖𝑖𝑖
+ cos(𝛼𝛼𝑎𝑎) = cos(𝑞𝑞𝑎𝑎).       

Define 𝑃𝑃 ≡ 𝑖𝑖2𝑏𝑏𝑖𝑖
2

 as the dimensionless strength of the potential.  One then has the following 
equation for the eigen-energies of the electrons in this periodic potential as a function of 
the crystal momentum 𝑞𝑞:  −𝑃𝑃 sin[𝑖𝑖𝑖𝑖]

𝑖𝑖𝑖𝑖
+ cos(𝛼𝛼𝑎𝑎) = cos(𝑞𝑞𝑎𝑎).   (1) 

 But what are the values of the crystal momentum 𝑞𝑞?  We can find them by also 
imposing periodic boundary conditions on the wavefunction (note that this is a distinctly 
different condition from the periodicity of the potential).  In other words, we take the ion 
lattice to be a long string involving 𝑁𝑁 ≫ 1 ions that wraps back on itself to become a large 
circle.  (Note that this condition comes with the assumption made at the outset of the 
calculation that the solutions are of the form of travelling waves, 𝜓𝜓(𝑥𝑥)~𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖.)  Under these 
circumstance we can demand that 𝜓𝜓(𝑥𝑥 + 𝑁𝑁𝑎𝑎) = 𝜓𝜓(𝑥𝑥).  Using the Block form for 𝜓𝜓(𝑥𝑥) =
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢(𝑥𝑥), and the periodicity of 𝑢𝑢(𝑥𝑥), we conclude that 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1, or in other words 𝑞𝑞 =
2𝜋𝜋𝜋𝜋
𝑖𝑖𝑖𝑖

, with 𝑐𝑐 being any integer.  Since 𝑁𝑁 is so large, these values of 𝑞𝑞 are very close together.  
Note that as 𝑐𝑐 increases from 0 to 𝑁𝑁 the value of  cos(𝑞𝑞𝑎𝑎) cycles from +1 to -1 and then 
back to +1.  A further increase of 𝑐𝑐 just finds the same solutions over again.  Hence there 
are just 𝑁𝑁 unique states described by the wavefunction satisfying periodic boundary 
conditions on an 𝑁𝑁-ion lattice. 
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 Now to solve Eq. (1).  Recall that 𝑃𝑃 is a measure of the strength of the periodic 
potential created by the positive ions.  Note that if 𝑃𝑃 = 0 (no periodic potential) one has 
𝛼𝛼𝑎𝑎 = 𝑞𝑞𝑎𝑎, or that 𝐸𝐸 = ℏ2𝑖𝑖2

2𝑚𝑚
, the properties of a free particle.  If we take the case of 𝑃𝑃 = 10 

(a strong periodic potential), then the situation is as shown in the figure below. 
 

 
Note that there are ranges of 𝛼𝛼𝑎𝑎 (i.e. energy) for which there is NO solution to the equation!  
This means that there are broad ranges of energy in which there are no propagating wave 
solutions to the Schrodinger equation.  These are called energy gaps, and they play a 
prominent role in determining whether a material is an insulator or metal. 
 From the periodic boundary condition we see that there are exactly 𝑁𝑁 states in each 
band (2𝑁𝑁 when we include spin).  Thus a metal with an odd valence (1, 3, 5, …) will fill 
up half of a band with electrons.  In this case there will be un-occupied states at energies 
infinitesmally higher than the Fermi energy, allowing the material to accept energy and 
create conduction.  On the other hand materials with an even valance (2, 4, 6, …) will 
exactly fill one or more bands, leading to a situation where the next available unoccupied 
energy state is very far above the Fermi energy (compared to the spacing between the states 
in an energy band).  These materials will be insulators.  Further discussion of even/odd 
valence in 3D materials is posted on the class web site. 
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